

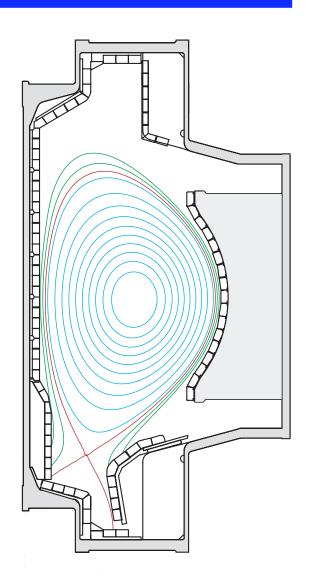
Plasma-wall interaction studies of the Alcator C-Mod Tokamak

*Equilibrated electrons-ions, no core momentum/particle sources, RF $\rm I_p$ drive

Sandia PFC meeting December 6, 2004

Presented by B. Lipschultz on behalf of the C-Mod Team

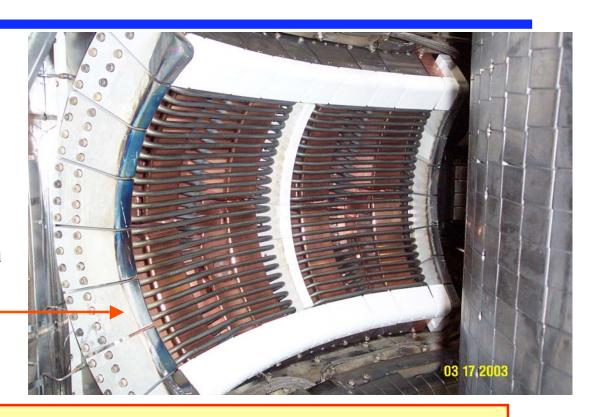
Outline



- General description
- Conditioning
- Molybdenum sources
- Mo erosion and D retention studies
- Dust
- Melting of Mo
- W-brush tile development
- New Lower Hybrid Current Drive
- Summary

Alcator C-Mod

Alcator C-Mod: Compact, High Field


- Toroidal Magnetic Field = 2 to 8 Tesla
- R = 0.67 m, a = 0.21 m
- Plasma Volume = 1 m³
- Plasma Current to 2.0 MA
- Temperature: 1 to 6 keV
- Density: 10²⁰ to 10²¹ m⁻³
- All RF driven, no Neutral Beam heating
- State of the art diagnostics
- Metal plasma-facing components (Mo)
 - Experimenting with other materials

Alcator C-Mod

All RF Auxiliary Heating, CD

- Ion Cyclotron Heating (ICRF)
- 8 MW Source
 - 4MW @80 MHZ
 - BN protection tiles
 - High power density!
- 2 dipole, 1 four-strap antenna
- Four-strap phaseable for heating or current drive

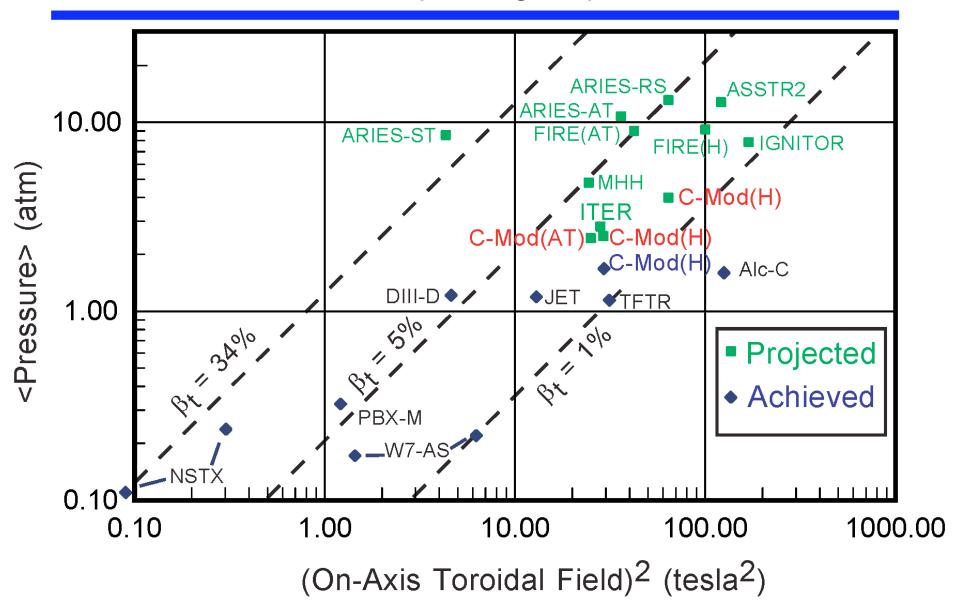
- Heating
 - H minority at 5.4 Tesla (80 MHz on-axis)
 - ³He minority at 8 Tesla
 - Mode conversion (direct e⁻ heating)
- Current drive (Fast Wave and Mode Conversion)

Wall materials and wall conditioning

- Walls are stainless steel, tiles generally molybdenum.
 - We have operated with antenna limiters made of BN
- After a vacuum break
 - Bake @ ~ 130°C to reduce water (and H levels which affect the ICRF absorption) for 10 days.
 - Electron-Cyclotron discharge cleaning (ECDC) to clean walls
 - Discharges to lower the H/D level further
- Every day
 - 2 hours of ECDC prior to run
 - Walls at room temperature

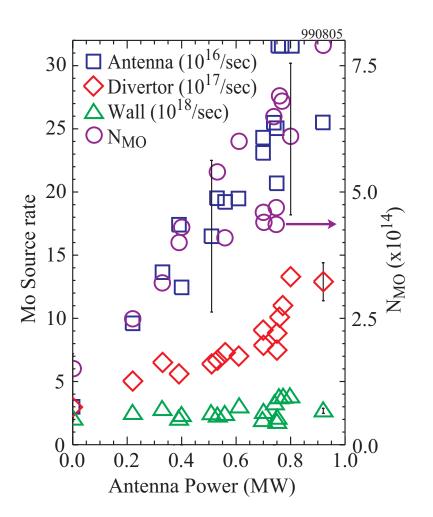
Boronization on Alcator C-Mod

- Typically deposit 5 g of boron during a boronization
 - 10% B₂D₆ in 90% helium
 - 12 hours of electron cyclotron discharge to deposit the B
 - 100 nm deposition
- Boronize again after approximately 200 discharges after
 - Moly radiation increases
 - H/(H+D) ratio increases and affects ICRF heating
- Currently testing an idea for boronizing during plasma discharges - a 'salt shaker' which drops ~ 50 μm size B grains into the plasma.

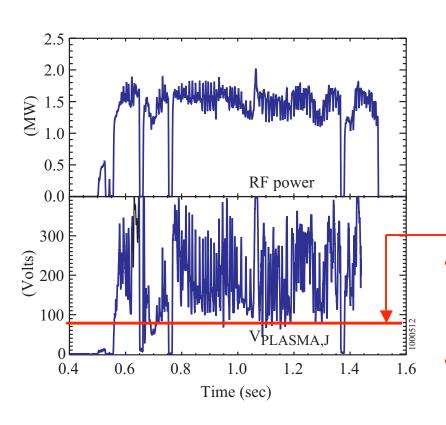


Unique C-Mod Capabilities

- Unique dimensional parameters (B/R, Power/Area, Plasma Pressure)
 - Key data determining empirical scaling of plasma performance
 - Key data for testing of basic physics understanding
 - Dimensionless Identity experiments (neutrals, radiation, ...)
 - Pedestal structure and regulation
- Equilibrated electrons and ions like a reactor (due to high density)
- ITER-level SOL power density, metal Plasma Facing Components
 - Reactor relevant divertor heat flux regime (~1GW/m² parallel power density)
 - Unique recycling properties, D/T retention
- Reactor-like normalized neutral mean free path (depends on B_{poloidal})
- Prototypical disruption forces
 - ITER level plasma pressure, energy density (disruption mitigation)
- Exclusively RF driven (also reactor-prototypical)
 - Heating decoupled from particle, momentum and current sources
 - Efficient off-axis current drive with Lower Hybrid
- Long pulse relative to skin and L/R times (test of current drive and profile control)



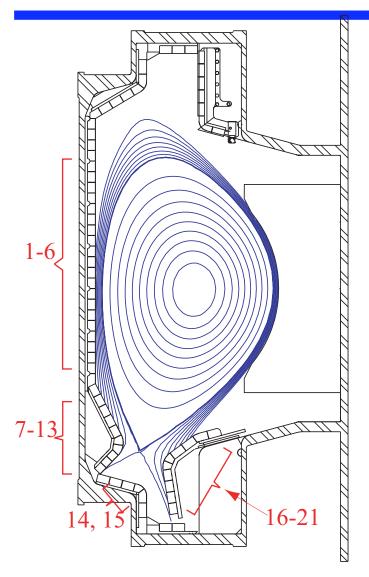
C-Mod should reach ITER pressure at same β Power reactors require higher pressure


Mo source linked to RF effect

- Mo sources monitored
 - Antenna, inner wall, divertor
- Close correlation of core Mo with antenna source
- Antenna far out in SOL
 - Sources should be small
 - RF sheath rectification appears to be responsible
 - High probability of sputtered Mo entering the core from outer edge

RF sheath rectification effect can be dealt with

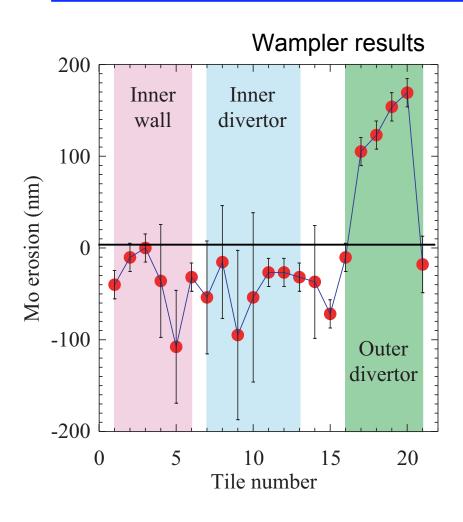
- When the RF is on
 - Electrical loop formed connecting antenna to wall to limiter and back thru plasma
 - Electrons can react to RF frequency but ions cannot
 - High sheath potential forms accelerating ions into surfaces at
 energies > sputtering threshold
- Mo tiles changed to. BN on antennas
 - Sheath rectification reduced
 - Antenna Mo source eliminated
- New campaign will start with a retry of Mo antenna tiles with reduced RF fields



Mo erosion and D retention

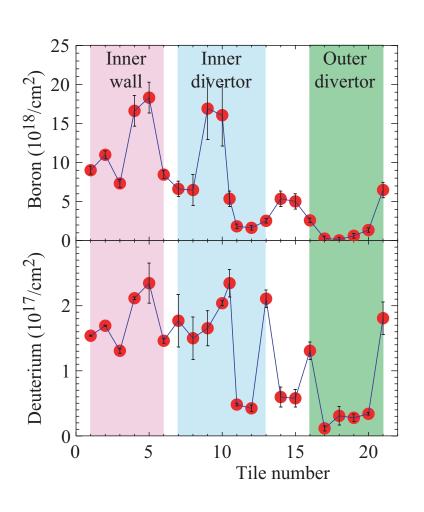
- Most detailed work on Mo erosion and H/D content in several papers/reports
 - W. Wampler et al., JNM 266-269 (1999) 217., W. Wampler et al., SOFE-99
 - Utilized markers on a series of tiles to determine erosion over run period
 - Surface analysis also provided the D and B densities
 - D. Pappas et al., JNM 266-269 (1999), D. Pappas, PhD thesis MIT report PSFC-RR-00-6.
 - Measured Mo influx rate spectroscopically
 - Modeled outer divertor erosion (sputtering) & redeposition
 - Model compared influx rates (and net ersosion) w/Wampler results
- I will review the above results and show some melting information

Wampler study utilized markers at a number of poloidal locations



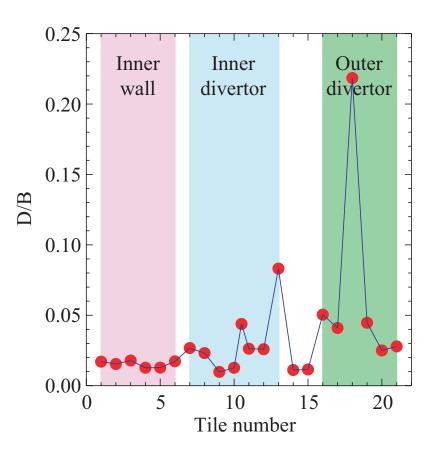
- Cr marker layer 100 nm thick
- Mo overlayer 300-600 nm (measured for each tile before installation)
- All on top of standard Mo tiles

Mo erosion highest at outer divertor



- Erosion concentrated at outer divertor
 - Inner divertor typically detached
 - Net erosion highest away from strike point region
 - Local redeposition can be ~ 90%
- Model of erosion/redeposition (Pappas)
 - Based on divertor probe measurements
 - Primarily B⁺² physical sputtering
 - Consistent with net erosion (within x2-3)
- Net erosion ~ 0.14 nm/s (0.45 cm/exposure-year)
 - ~ 20x smaller than a similar study w/carbon tiles (Whyte, DIII-D)

Boronization leads to B layers and D retention



- B erosion similar to Mo (outer divertor) occurring fairly quickly (20-40 discharges)
- B deposition appears to be at inner wall & divertor, as well as PFZ.
- D levels low, particularly where B low

D/B ratio low compared to C machines and to theoretical B limit

- D/B ratio can theoretically be of order 0.4
- In regions of thick B layers the D/B ratio is low - likely due to multiple boronizations and thin active layer (few nm).
- D/B ratio larger at outer divertor
 - uncertainties large due to very thin B layer
- Generally, only 2.5% of the retained D is in the divertor.
- Wall D inventory ~ 100x that in plasma
- Estimated T retention ~ 10 x less than for C machine
- Typical wall-fueling saturation time ~ 1 sec before and after boronization.

Similarities and differences with low-Z PFC tokamaks

- Generally see a pattern of erosion similar to other tokamaks
 - Outer divertor erosion, deposition elsewhere
- Having a lot of B around does not seem to have changed the recycling characteristics in a major way.
- The amount of D retained in the B seems quite low compared to the maximum allowable.
 - We cannot rule out co-deposition
- The wall-fueling equilibration time is ~ 1 shot.
- Wall pumping
 - In an individual shot the amount pumped by the wall is often ~15% of what is injected.
 - Over a whole day the amount released by disruptions during the shot or (more often) during rampdown ~ equals the amount pumped during other shots.

Alcator C-Mod

Dust found where expected

- Collaboration with INEEL
 - Report DAP-23-98
- Vacuum dust though .02 μm pore size Anopure filter (21 locations)
- Lift-off tape samples as well (13 locations)
- As expected the dust is primarily found on the floor

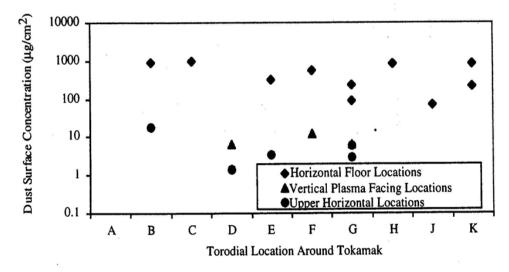


Figure 2.7 Graph of the torodial mass distribution of dust around the machine grouped into three general machine locations.

Metal dust much different than from C PFC machines

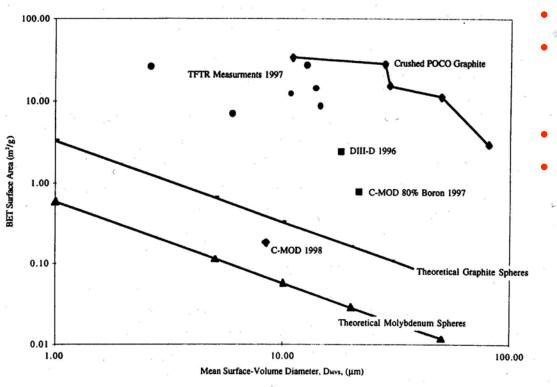
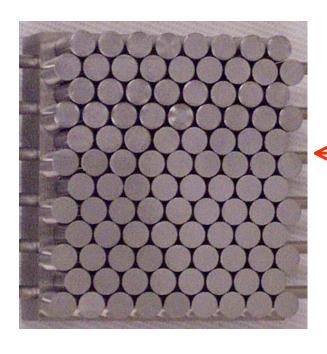


Figure 6.1. Graph of the BET Specific Surface area plotted verses the mean surface-volume diameter for a variety of materials, previous measurements, and the current C-MOD measurement.

- Mixture of Mo and steel dust
- Spherical as opposed to flakes found in other tokamaks
- Near theoretical limit
- Calculate added surface
 - Concentration 10g/m²
 - ~ 1.5 m² at vessel bottom
 - Dust surface area=0.18 m²/g
 - Added area =
 10g/m²•1.5 m² 0.18 m²/g
 - Added area ~ 3.5 m²
 - C flakes 100x larger area

Melting primarily where surfaces misaligned

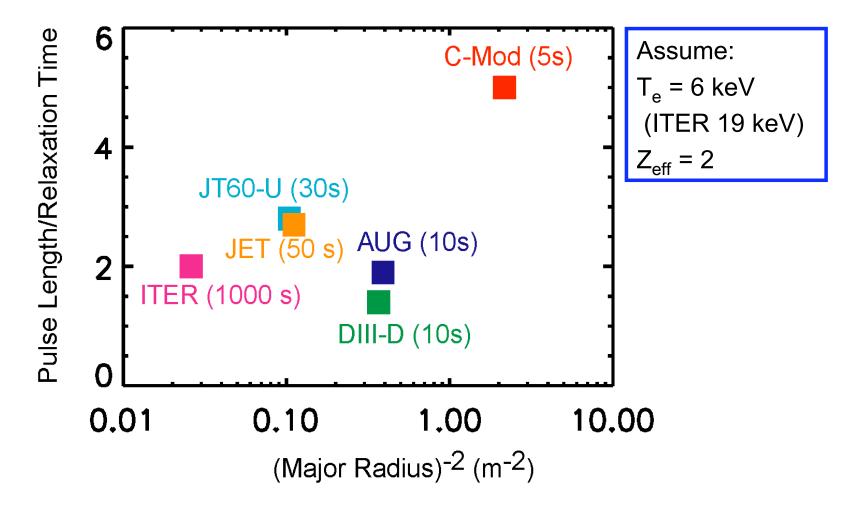


- Example shown is for a divertor plate that moved out of position due to halo current forces.
- Melting localized to edge which stuck out in front of neighboring divertor module
- We did not correlate these melted areas (on a number of modules) with changes in core Mo levels but there may have been
- Melt layer shows ripples and is mostly affected by gravity.
- Some movement toroidally

Tungsten will make its appearance in C-Mod soon

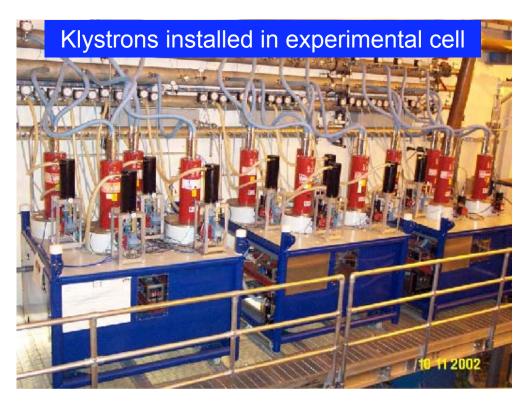
- Important Sandia collaboration
- Tungsten welding rods (3 mm dia) used
 - Grains parallel to length
 - Inconel base
- Testing several attachment methods
- Mechanical locking of rod into base
 - Brazing of rod into inconel
- 12 tiles to be installed this month (divertor)
- Testing
 - IR views of 9 tiles, CCD camera views of 3 tiles
 - Spectroscopic views for W influx
 - Plan for maximal high heat flux at end of run period.
- Interested in leading edge and melting experience

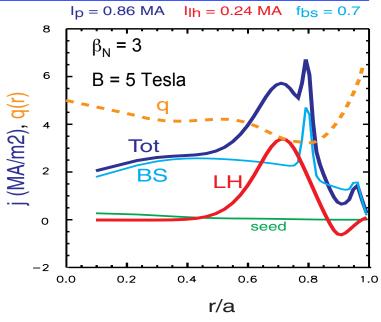
C-Mod experience indicates that a low-Z main chamber has advantages



- Boronization
 - lowers Mo levels at high power even after the B is completely eroded from the outer divertor
 - Did not seem to have a significant effect on our recycling and fueling
- Antenna limiters were changed to BN because of sheath rectification issues. This also lowered the Mo injection during ICRF heating.
- Other poloidal limiters and inner wall still Mo (boronized).
 - ⇒ We have generally found that reducing the high-Z material in regions of poor impurity screening (outer edge) is important
- Dust levels are consistent with expectations, low and less flake-like than w/C
- The C-Mod experience with Mo and B indicates that the combination of the two gives:
 - Low D/T inventory
 - Low-Z impurity sources in the main chamber where the impurity screening is poor

Next step: Advanced Features for steady state


- Steady State
 - High bootstrap fraction + Efficient current drive
- C-Mod positioned to study fully relaxed current profiles




Lower Hybrid will be used for far Off-Axis Current Drive

- LHCD (4.6 GHz, 4 MW)
 - Far off-axis
- Target plasma is fully non-inductive, at nowall limit, 70% bootstrap fraction
- First experiments: Winter 2005

C-Mod making important contributions to tokamak PFC experience

- Developing ICRF Heating & Current Drive
- Experience with high-Z and low-Z in the same machine
 - Mo erosion and D retention studies.
 - Dust
 - Melting of Mo
- New tile development (W-brush)
- New Lower Hybrid Current Drive
- C-Mod also unique w/respect to physics studies
 - Size & field make it important in empirical scaling studies
 - Important in dimensionless parameter scaling tests of underlying plasma physics